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Humans as Sensors

Egypt Unrest Fukushima Disaster

Twitter FlickrFacebook Google+ Instagram

Sandy Gas Outage Crimea Annexation Syria Chemical Attack

Credibility 
Estimation

Anomaly 
Detection

Timeline 
Reconstruction …

2



Binary Sensor Model
•  Assume that each observation is either True or False

•  True means independently observable events.

•  Some observations are neither True nor False, 
representing Non-Factual claims.
•  May be slogans or emotions or opinions.
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…
 Sources Claims

Attribute:
Credibility

Attribute:
True / False

Source Claim Network
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State of the Art
•  Independent Sources, Independent Claims     IPSN 2012

•  On Truth Discovery in Social Sensing
•  Confidence Bounds            SECON 2012

•  On scalability and robustness limitations of real and 
asymptotic confidence bounds in social sensing

•  Admission Control                                      INSS 2012
•  On Diversifying Source Selection in Social Sensing

•  Conflicting Claims                                        RTSS 2013
•  Exploitation of Physical Constraints for Reliable Social Sensing 

•  Non-independent Sources                                    IPSN 2014
•  Using Humans as Sensors: An Estimation Theoretic Perspective

•  Polarized Sources                                            DCOSS 2014
•  This paper 5



Case Study: Egypt 2013
•  Event: 2013 Uprising regarding former Egyptian 

President Mohamed Morsi
•  Crawler starting July 2013, and continued for more 

than four months.
•  17 GB of tweets collected. 600K were “English” 

containing the word “Morsi”, which belonged to 173K 
cascades of different claims / observations. 

•  The largest 1000 cascades were manually annotated as 
being Pro-Morsi or Anti-Morsi or Neither
•  Accounted for 44K sources and 95K tweets
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Pro Claims
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Anti Claims
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Neither
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Degree of Polarization
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•  Some users are highly polarized, and mostly forwards 
tweets favoring camp they belong to (Pro or Anti)

•  Some users are neutral

~50%

~25%



Social Propagation Network

11Anti network Pro network



Effect of Polarization
•  When sources are biased towards a topic, their 

observation errors on that topic are more correlated.
•  When they do not share a bias, errors are independent. 
•  Corroboration among correlated sources carry less statistical 

weight than when they are independent.
•  Polarity unaware algorithm improperly computes the 

correlation between sources.
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Polarity-aware Fact Finder
•  Computes the latent networks 

from pro, anti, and neutral 
claims (SIGMETRICS 2012)

•  Uses each network to 
estimate correlated errors in a 
manner that depends on 
content type.

•  Accounts for correlation in 
credibility analysis.

…
 

Sources Claims

Attribute:
Credibility

Attribute:
True / False13



Polarity-aware Fact Finder

S1

S2

S3

C1

C2

C3

C4

C5
S4

So
cia

l P
ro

pa
ga

tio
n 

N
et

w
or

k

Original Problem

S1

S2

S3

C1

C3

S4

Pr
o 

N
et

w
or

k

S1

S2

S3

C2

C4
S4

An
ti 

N
et

w
or

k
S1

S2

S3

C5S4

N
eu

tra
l N

et
w

or
k

Attribute:
Pro Cred

Attribute:
True / False

Attribute:
Anti Cred

Attribute:
True / False

Attribute:
Neu Cred

Attribute:
True / False14



Evaluation
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Input Combined Polarized
Pro Claims 199 147 128
Anti Claims 109 88 76

Neutral Claims 692 543 496



Evaluation

•  662 output claims were common to both algorithms
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Set A Set B
Definition Polarized Exclusive Combined Exclusive

Total 38 116
Factual 26 82

Non-factual (0) 12 34
True (1) 25 72
False (-1) 1 10

False Claims 2.6 % 8.6 %
Factual True 96 % 88 %



Conclusion
•  Separation of claims by polarity prevents estimation of 

false dependencies between neutral sources.
•  Probability of error reduced by factor of three for the 

factual claims.
•  More than 18% improvement in overall Quality of 

Information.
•  Easily extensible to incorporate ML or NLP analysis 

which may improve the fact-finding performance.
•  Idea of polarities can be extended to “topics” with 

arbitrary relations and hierarchy.
•  Did not consider adversarial sources.
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Why Largest Cascades?
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Polarity-aware Fact Finder
•  Computes the latent networks 

from pro, anti, and neutral 
claims (SIGMETRICS 2012)

•  Uses each network to 
estimate correlated errors in a 
manner that depends on 
content type.

•  Accounts for correlation in 
credibility analysis.

…
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Credibility
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Effect of Polarization
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The non polarized algorithm confuses the 
dependency of the neutral sources



Effect of Polarization
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Dependency of the strongly polarized sources are correctly 
determined by both polarized and non-polarized algorithms  



Evaluation

•  662 output claims were common to both algorithms
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Input Combined Polarized
Pro Claims 199 147 128
Anti Claims 109 88 76

Neutral 
Claims

692 543 496

Total 1000 778 700
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Epidemic Propagation
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•  Nodes get infected, infect other nodes, and the 
process continues resulting in a propagation graph.

•  Inverse Problem*: Given the observation of infections, 
find the structure.

* Praneeth Netrapalli, Sujay Sanghavi, Learning the Graph of Epidemic Cascades. SIGMETRICS 2012
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Standard Independent ���
Cascade Model*
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Susceptible Infected
Active

Inactive

•  Proceed in discrete step
•  Initial seeds random with 
probability pinit

•  i infect j with pij
•  Active node inactive 
after one step

* Proposed by Goldenberg, Libai, and Muller, “Talk of the Network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 2001. Also appears in Kempe, Kleinberg, 
and Tardos “Maximizing the spread of influence through a social network, KDD 03
•  Illustrative example taken from author’s presentation
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Standard Independent ���
Cascade Model
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Susceptible Infected
Active

Inactive

•  Proceed in discrete step
•  Initial seeds random with 
probability pinit

•  i infect j with pij
•  Active node inactive 
after one step

0

0
* Praneeth Netrapalli, Sujay Sanghavi, Learning the Graph of Epidemic Cascades. SIGMETRICS 2012



27

Standard Independent ���
Cascade Model
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Susceptible Infected
Active

Inactive

•  Proceed in discrete step
•  Initial seeds random with 
probability pinit

•  i infect j with pij
•  Active node inactive 
after one step

0

0

1
1

* Praneeth Netrapalli, Sujay Sanghavi, Learning the Graph of Epidemic Cascades. SIGMETRICS 2012
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Standard Independent ���
Cascade Model
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Susceptible Infected
Active

Inactive

•  Proceed in discrete step
•  Initial seeds random with 
probability pinit

•  i infect j with pij
•  Active node inactive 
after one step

0

0

1
12

* Praneeth Netrapalli, Sujay Sanghavi, Learning the Graph of Epidemic Cascades. SIGMETRICS 2012
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Standard Independent ���
Cascade Model
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Susceptible Infected
Active

Inactive

•  Proceed in discrete step
•  Initial seeds random with 
probability pinit

•  i infect j with pij
•  Active node inactive 
after one step

0

0

1
12

* Praneeth Netrapalli, Sujay Sanghavi, Learning the Graph of Epidemic Cascades. SIGMETRICS 2012
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Structure Learning Problem
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Given node activation times Find network structure

* Praneeth Netrapalli, Sujay Sanghavi, Learning the Graph of Epidemic Cascades. SIGMETRICS 2012
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Structure Learning Problem
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0

1
12

The example cascade had no 
evidence of the black edges. 
Hence, one cascade is not 
sufficient to learn the 
structure.

Q: How many cascades necessary?

Q: Given the cascades, how to find the structure?
* Praneeth Netrapalli, Sujay Sanghavi, Learning the Graph of Epidemic Cascades. SIGMETRICS 2012


