
SocialTrove: A Self-summarizing Storage Service
for Social Sensing

Md Tanvir Al Amin∗, Shen Li∗, Muntasir Raihan Rahman∗, Panindra Tumkur Seetharamu∗, Shiguang Wang∗,
Tarek Abdelzaher∗, Indranil Gupta∗, Mudhakar Srivatsa†, Raghu Ganti†, Reaz Ahmed‡, and Hieu Le§

∗University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Email: {maamin2, shenli3, mrahman2, tumkurs2, swang83, zaher, indy}@illinois.edu
†IBM Research, Yorktown Heights, NY 10598, Email: {msrivats, rganti}@us.ibm.com

‡University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, Email: r5ahmed@uwaterloo.ca
§TCG Corp., San Jose, CA 95134, Email: hieu@trustcircleglobal.com

Abstract—The increasing availability of smartphones, cam-
eras, and wearables with instant data sharing capabilities, and the
exploitation of social networks for information broadcast, heralds
a future of real-time information overload. With the growing
excess of worldwide streaming data, such as images, geotags,
text annotations, and sensory measurements, an increasingly
common service will become one of data summarization. The
objective of such a service will be to obtain a representative
sampling of large data streams at a configurable granularity,
in real-time, for subsequent consumption by a range of data-
centric applications. This paper describes a general-purpose self-
summarizing storage service, called SocialTrove, for social sensing
applications. The service summarizes data streams from human
sources, or sensors in their possession, by hierarchically clus-
tering received information in accordance with an application-
specific distance metric. It then serves a sampling of produced
clusters at a configurable granularity in response to application
queries. While SocialTrove is a general service, we illustrate its
functionality and evaluate it in the specific context of workloads
collected from Twitter. Results show that SocialTrove supports a
high query throughput, while maintaining a low access latency
to the produced real-time application-specific data summaries.
As a specific application case-study, we implement a fact-finding
service on top of SocialTrove.

I. INTRODUCTION

This paper describes the design, implementation, and evalu-
ation of SocialTrove; a self-summarizing storage service for
social sensing applications. The service offers an API that
allows applications to access their data at different degrees of
summarization in a configurable manner. SocialTrove is moti-
vated by the advent of an age of data overload, brought about
by the increasing availability of smart devices with instant data
collection and sharing capabilities, as well as by the growth of
social network broadcast, such as microblog upload on Twitter.
Early autonomic computing envisioned machines with self-*
properties that independently meet application needs. The rise
of social networks in the present decade, together with the
proliferation of smart devices and other digital data sources,
suggests that an increasing application need in the foreseeable
future will be one of summarizing large volumes of redundant
data for subsequent processing. This motivates development of
a general-purpose summarization service.

In this paper, we focus on social sensing applications. We
refer by social sensing to those applications, where humans
share information on themselves or their environment, either

directly (e.g., by blogging) or using sensing devices in their
possession (e.g., sensing on a smart phone). The application
features a back-end, where collected data is stored, which is
the focus of our work. Social sensing applications encom-
pass participatory sensing [1]–[4], opportunistic sensing [5]–
[7], and use of humans as sensors [8]–[13]. For example,
smartphone users on a participatory sensing campaign might
run a geotagging application that allows them to upload GPS
locations of items of interest via the phone. The application
might also allow them to describe these items using text
tags, or to supply images. For another example, Internet-
connected vehicles may upload speed information periodically
from on-board navigation systems, allowing the back-end
servers to compute city traffic speed of different streets. In
recent work, the authors explored the use of social networks,
such as Twitter, as sensor networks, observing that many
tweets can be viewed as bits of information about the state of
the physical world. For such sensor networks, an application
might construct physical state estimates from “human sensor”
observations [8], [10], [11], [14]. A common characteristic of
social sensing systems exemplified above is that they generate
large amounts of redundant data. The underlying data objects
may be different, depending on the application. The simplest
way to summarize data is to reduce redundancy by offering a
sampling of the original data set, where the selected samples
are minimally redundant. We call such a sampling policy,
representative sampling. A challenge, therefore, is to develop
a representative sampling service agnostic to the data type.

SocialTrove is an exercise in building a general-purpose
representative sampling service that reduces redundancy in
large data sets. The service allows application designers to
specify an application-specific distance metric that describes a
measure of similarity relevant to this application among data
items. Based on that application-specific measure, the service
hierarchically clusters incoming data streams in real time, and
allows applications to obtain representative samples at arbitrary
levels of granularity by returning cluster heads (and member
counts) at appropriate levels of the cluster hierarchy.

An important design consideration in developing our ser-
vice is scalability. When data are large, if the observations
are stored in a cluster-agnostic manner, retrieving a repre-
sentative summary would require scanning the entire set of
observations, thereby communicating with many machines and
decreasing throughput. Instead, SocialTrove stores content in a

similarity-aware fashion, according to the application-specific
similarity metric. We implement SocialTrove and evaluate its
performance in the context of summarizing Twitter data. We
demonstrate that it outperforms the alternate mechanisms in
terms of both (summary) query latency, and maximum query
throughput. To demonstrate an application that uses Twitter
data summaries, we built a fact-finding service [8] that uses
the produced summaries to determine which observations are
more credible in the presence of noise, errors, and conflicts.
We observe that the fact-finder implementation on top of
SocialTrove required significantly fewer lines of code than a
standalone service.

The rest of this paper is organized as follows. Section II
describes the main interface exported by SocialTrove as a self-
summarizing storage service. In Section III we present the
distributed architecture of the SocialTrove runtime. Section IV
presents microbenchmarks and a performance evaluation. We
review the related work in Section V. This paper concludes
with a discussion in Section VI.

II. A SELF-SUMMARIZING STORAGE MODEL

Our goal in this paper is to build a (data storage) service
that allows an application to retrieve summaries of their data
at arbitrary levels of granularity based on an application-
specific redundancy metric. We call such a service, self-
summarizing storage. The main purpose of summarization is
to reduce data redundancy by selecting data samples that are
minimally redundant. Towards that end, SocialTrove employs
a hierarchical clustering scheme and returns data samples con-
stitituting cluster-heads at a configurable granularity (together
with the sizes of corresponding clusters). Finally, we aim to
design the service that is agnostic to the data type, so that
it may be reused in different application contexts. Hence,
we allow applications to define their own application-specific
distance metric between data objects, and cluster objects in the
corresponding feature space. The SocialTrove API is carefully
designed not to make assumptions regarding the feature space
in which application objects live, and yet perform clustering,
store clusters, and serve summary queries in an efficient
manner at different levels of granularity.

In accordance with the above design requirements, the
fundamental abstraction and main “citizen” of SocialTrove is
the abstract data object. It is an opaque data type that Social-
Trove itself does not interpret. Instead, it stores object records
that are tuples of (ObjectSource, ObjectHandle,
FeatureVector), where ObjectSource specifies the
ID of the input source (e.g., sensor ID, camera ID, or
social network user ID) from which the object was ob-
tained, ObjectHandle is a handle to the abstract data
type, and FeatureVector is a placeholder for the object’s
application-specific feature vector (not computed by Social-
Trove).

Further, the service offers two interfaces; (i) a cus-
tomization interface that allows applications to define their
application-specific features and distance metrics for objects,
and (ii) a summary query interface, that allows applications to
retrieve data summaries at different degrees of granularity. We
begin the paper by describing those interfaces first to give the
reader, respectively, an understanding of (i) the way we attain

independence of the service from the application-specific data
type, and (ii) the functionality we offer to the application.

A. The Customization Interface

To customize SocialTrove to the summarization needs of a par-
ticular application, two application-specific callback functions
must be written by the application developer. These functions
will be called by SocialTrove. Namely:

• Vectorize(u): SocialTrove expects applications
to implement a callback function, called
Vectorize(). SocialTrove passes an object
handle, u, to this function. The function returns a
corresponding feature vector, FeatureVector.
Note that, SocialTrove never interprets the incoming
objects themselves or assumes their format. Rather,
only Vectorize() is aware of what an object
means. Similarly, SocialTrove does not interpret the
output feature vector. It is stored as an opaque data
type in the object’s record.

• Distance(u.FeatureVector,
v.FeatureVector): SocialTrove expects
applications to implement a callback function,
called Distance(), that computes the distance
between two objects, u and v, based on their feature
vectors. As mentioned above, SocialTrove itself never
interprets the feature vectors, as they are application
specific. Instead, it treats the feature vectors generated
by the Vectorize function as an opaque data type.
A handle to the data type is stored in the object’s
record. The Distance() function operates on
these vectors and returns a scalar distance value.
We require that the scalar distance value obey the
triangle inequality. In other words, we require that
distance(u, v) + distance(v, w) ≥ distance(u,w).

The above interface is flexible and supports the needs of very
different applications. For example:

• Scalar measurements: In applications involving scalar
sensor values, Vectorize() trivially returns the
scalar sensor measurement. Distance() returns the
difference between two measurements.

• Vector measurements: In applications where objects
such as, environmental measurements, are associ-
ated with metadata, such as time and location,
Vectorize() might focus on metadata elements
of objects, viewed as a feature vector. Distance()
might then return a weighted Cartesian distance be-
tween feature vectors, where weights reflect the rel-
ative impact of differences in the corresponding di-
mension on the likelihood of similarity between ob-
jects. For example, say, we know that a particular
variable does not change much over time, but has large
spatial variations. Hence, the weight of the location
dimension is set larger and the weight of the time
dimension is set smaller. This allows computing a
scalar similarity measure between any two objects
and estimating measurements at one time and location
using a nearby object in the feature space (albeit from
a different time and location).

• Pictures: In applications involving visual objects,
Vectorize() might apply a library of image
processing tools to extract relevant image features.
Distance() may compute visual similarity between
images based on these features.

• Text and tags: In applications where objects constitute
small amounts of text (such as tweets or tags asso-
ciated with images), Vectorize() might split the
text entry on whitespaces into different tokens (words).
Distance may be applied on pairs of vectors (token
lists) by counting the proportion of similar tokens.
The Tanimoto distance and the Angular distance are
suitable distance metrics in this space [15], [16].

The point of the above discussion is to demonsrate versatility.
Many application domains (e.g., vision and speech) already
have well-defined distance metrics between objects. The def-
inition of vector spaces and distance metrics is thus out of
scope for SocialTrove. In our case study, we demonstrate a
distance defined on short text (tweets), showing how it leads
to meaninful summaries of human observations.

B. The Summary Query Interface

Using the above two application-specific callback functions,
SocialTrove has all it needs to perform hierarchical clustering
in real time, as will be described later in this paper. With clus-
ters at different levels of granularity constructed, SocialTrove
exports an interface to retrieve data summaries at different
degrees of granularity. A summary in our service is given by a
list of cluster-heads. For each cluster-head, the service allows
one to optionally retrieve a member count (i.e., count of objects
in the same cluster) or a member list (list of object record
handles for objects in the same cluster). Remember that an
object record is a tuple, (ObjectSource, ObjectHandle,
FeatureVector), specifying the source ID, feature vector
and object handle. Hence, given a list of record handles, the
application can retrieve the corresponding objects, sources, or
features, depending on how much data they need.

For example, an application interested in the degree of data
corroboration only, might retrieve a summary that consists of
cluster heads and member counts only. An application that
also needs to know which sources reported the observations
in the cluster (e.g., in case some are trusted more than
others), can retrieve the member (handle) list and inspect the
sources. An application interested in statistics over clusters
may also inspect the feature vectors. The SocialTrove runtime
is described in the following sections.

III. SOCIALTROVE RUNTIME

SocialTrove is designed for large-scale social sensing services
where collected data is too big for a single machine. Hence,
we design and implement SocialTrove on a machine cluster. In
this section, we describe the design of the runtime environment
that makes it scalable. The design is based on two observations:

• Latency and throughput are improved by limiting
global state updates to only once per a configurable
interval, called the batching interval. Hence, incoming
data are buffered until enough of it is present, then a
batch process makes an update to existing clusters,

Distributed Cluster
Model

(Interval t)

Cluster Model
for Interval t

Online Clusters
(Interval t)

Distributed Storage

 Interval t
 Interval t-1

 Interval 2
 Interval 1

Input
Daemon

Cluster Model
Cache

Input Proxy

Input
Daemon

Cluster Model
Cache

Input
Daemon

Cluster Model
Cache

Cluster Model
for Interval t

Offline Job
Adjust Clusters

(Interval t-1)

E
xt

er
na

l S
ou

rc
e(

s)

 Interval t
 Interval t-1

 Interval 2
 Interval 1

 Interval t
 Interval t-1

 Interval 2
 Interval 1

Fig. 1. SocialTrove System Design

once per batching interval. Batching amortizes run-
time overhead across a larger body of input data.
The batching interval (e.g., 5 minutes) is thus a
configurable parameter that offers a trade-off between
data freshness and update overhead.

• Availability is improved by noting that social sensing
content is likely to exhibit temporal locality. Hence,
state does not change significantly across batching
periods, making further optimizations possible.

A. System Components

Figure 1 shows the components of SocialTrove and their
interactions, described below.

1) Data Input Proxy: We envision SocialTrove to sit on top
of a data collection service. This service will interact with the
various sources and will supply a stream of real-time data to
SocialTrove for summarization. In the current implementation,
the input is supplied as a set of tuples (ObjectSource,
ObjectHandle) in JSON [17] format. In our particular
application example, we replace the data collection service
with Twitter and write a simple interface that uses Twitter API
to stream tweets. In this instantiation, ObjectSource is a
Twitter user ID, and ObjectHandle is a handle to a tweet
object (including text and metadata).

The input proxy is composed of several data input daemons
that receive streaming objects and must resolve where to
store each. This resolution is done by consulting a Cluster
Model, which keeps track of the existing clusters for the
present batching interval and the mapping from these clusters
to individual storage machines.

2) Client Query Proxy: Similarly to the input daemon
nodes, are the client query proxies. (The proxies are not
shown in Figure 1 to keep it simple.) They function like
input daemons and cache the cluster model as well. Instead
of clustering collected data from external sources, the query
proxies receive queries from SocialTrove clients, and fetch the
matching data summaries from the storage nodes using their
locally cached cluster model.

3) Cluster Model: The Cluster Model is a data structure
that contains the set of cluster centroids, along with their hier-
archical relationships. Computing an accurate cluster model
requires knowledge of all the data objects, including those
that would be arriving in future. Because the data objects

arrive as a stream, having an accurate model is often not
possible. Maintaining a streaming cluster model that updates
the existing clusters as the data objects arrive would be close
to accurate [18]. In this scenario, the input daemons would
require exclusive locks to update the model at every insertion,
and all the proxies would need to synchronize the updates
to maintain consistency. Such a write-heavy scheme would
greatly reduce both throughput and response time of the
system, and would not be scalable as a service.

To solve this problem, SocialTrove maintains a system
wide batching interval of ∆ minutes. A new cluster model is
computed using the recently collected data objects, and adver-
tised at the beginning of every interval. The input daemons and
the client query proxies cache the cluster model (or portions
of it) in their main memory that remains consistent until the
interval ends. In later sections, we discuss different solutions
to organize and update the cluster model.

4) Storage: The storage nodes store actual data objects
in a clustered form. The objects are received from the input
daemon nodes that cluster incoming data objects using the
cluster model. The clusters stored in the storage nodes are
partitioned and indexed according to the interval they were
received. For a particular interval, the union of the respective
partitions over all the storage nodes constitutes the ‘sensed
universe’ for that interval.

5) Model Update Routine: The model update routine is
run every batching interval of ∆ minutes. During interval t, it
considers the data objects received in interval t−m to t− 1
(the previous m intervals), and computes the cluster model
that the data input and the client query proxies will use during
interval t + 1 (the next interval). As an option, output of this
routine can be fed back to the storage nodes so that the data
objects received during interval t− 1 could be readjusted.

B. Cluster Model Management

The Cluster Model is a key part of SocialTrove. It maintains
a set of centroids as the cluster heads of the existing clusters.
For an incoming data object, the input daemons traverse
the cluster model to find the centroid of the cluster this
object belongs to. Similarly, to serve the applications running
on top of SocialTrove, the client query proxies traverse the
cluster model to find matching vectors. Depending on how the
distributed cluster model is organized and maintained, there
can be different trade-offs and flexibilities the system can offer.

SocialTrove is scalable by virtue of efficient realization
of these insert and lookup queries. If there are k centroids
and n incoming data objects in an interval, the naive and
most versatile implementation requires a query object to be
compared with all the centroids to find the nearest match,
resulting in a O (nkd) algorithm when the whole cluster
model fits in the cache and the comparisons take O (d) time.
The comparison time can be considered a constant. We also
observe that the cluster sizes in socially sensed data objects
approximately follow a long tail distribution, and k is roughly
of the same order as n. Hence, the naive algorithm requires
O
(
n2

)
time when the entire cluster model fits in the cache.

This naive solution would not be scalable.

If object distances, however, follow the triangle inequality,
some distances can be inferred from others and hence the

A

D

CB

E

H

G

KI
J

F

L M N P

C	

A	

B	

E	

D	
F	

G	

H	

I	 J	 K	

Tree
Representation

Points in 2D

u

L	

N	

P	

M	

Fig. 2. Mapping a set of points in two dimensions to a tree

above extensive comparison is an overkill. Given a metric
distance space, we thus build a nearest neighbor data structure
(tree) during clustering. The insert and search operations on
the clustered data objects can then be performed efficiently
using the tree. Disjoint partitions of the tree are mapped to
different storage nodes, so that an input daemon can quickly
decide which storage node to forward the incoming data object,
and a query proxy can quickly decide which storage node(s)
to forward the user query to.

If the distance function satisfies all the properties of a met-
ric (non-negativity, small self-distance, isolation, symmetry,
and triangle inequality) [19], it enables us to use rich Nearest
Neighbor data structures like M-tree [20] or Ball-tree [21] to
perform k-means [22] clustering efficiently. It is trivial to
satisfy the first four properties. The triangle inequality may not
be satisfied by all distance measures. However, if any of the
last three conditions fail; provided the other four are satisfied,
it is possible to find a function through transformation, which
is a metric function [19].

The euclidean distance function follows triangle inequality
and is a metric function. In fact, all normed vector spaces are
metric spaces, if we define d(x,y) = ‖x− y‖. Some distance
measures like KL-Divergence or Mahalanobis Distance do not
follow triangle inequality, but instead follow another property
called Bregman Divergence. There are Nearest Neighbor data
structures inspired by Ball-tree; for example Bregman Ball-
tree [23] that can be used in this case for efficient clustering.
These, however, are currently not implemented on SocialTrove.

In SocialTrove, the cluster model is represented as a binary
tree of centroids. The tree is constructed using a divide and
conquer paradigm. At every stage, the current set of vectors
is partitioned into two sets, using a 2-means1 clustering
algorithm. The centroids of the two sets are considered as the
two children of the centroid of the original set. This process
continues until we arrive at a set of vectors with diameter less
than a threshold, which is considered as a single indivisible

1k-means clustering with k = 2

��
�����
����
�����
����
�����
����
�����
����
�����
����

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��
��
��
��
��
��

�������������������

�����
������
������
������
������

Fig. 3. Distribution of Search Completeness

cluster. The data objects are separable in this way, provided
the distance function satisfies the triangle inequality (and all
the properties of a metric). The tree is generated by the model
update module, and synchronized every interval to the input
daemon and the proxy nodes that cache it. As an illustrative
example, Figure 2 shows a set of points in two dimensional
space and maps those to a corresponding binary tree that
divides the space using the euclidean distance among the points
as a distance metric.

For each collected object, the input daemons find the
closest centroid from the tree, and assign it to the corre-
sponding cluster. If there are k centroids, this operation can
be performed quickly, in O (log k) time. However, for the
clustering performed this way to be correct and the lookup
operations to succeed, the nodes of the tree requires perfect
centroids for all objects that would be collected during the
current interval, which is not possible.

We assume that objects collected in the present interval
are correlated with those collected in past intervals. Hence,
we estimate the cluster tree for interval t during interval t− 1
by clustering the objects collected in last m intervals (i.e.,
intervals t−m− 1 to t− 2).

To check the validity of our assumption, experiments were
performed using Twitter data as the input by clustering past
tweets to build the cluster tree, and inserting new tweets
using it. The objective was to check how complete the lookup
operations would be, if a scheme for quickly clustering recent
tweets based on a past model is used. The hashtags present in
the current set of tweets were then used as search queries. We
used a very large ∆, of 1 day, as a very extreme case. Figure 3
shows the distribution of search completeness for the newest
tweets for different values of m from 1 day to 5 days.

The plot confirms that tweets from present and past in-
tervals are correlated. The plot also reveals one potential
limitation of this method; false negatives. Over 20% of user
queries could not find any match at all, and 40% could only
find at most 50% of the desired results. This problem is visible
with high dimensional data like text or tweets, where some
dimensions were not known when the summary model was
generated. As the cluster tree is computed and circulated to the
input daemon nodes in synchronous intervals, it fails to look
up using query terms that are unique to the present interval.

As a solution, we add an asynchronous component to the
cluster model using Bloom filters [24]. There are Bloom filters
corresponding to every node of the cluster tree. Dimensions
(keywords, in case of tweets) unique to the present interval
are locally inserted to the Bloom filters corresponding to the
tree nodes visited by an incoming data object. Crawlers use

1: procedure INSERT(u) . Data object u
2: nodesync ← root(CMsync) . Global cluster model
3: nodeasync ← root(CMasync) . Local cluster model
4: while nodesync is not leaf do
5: lsync ← left(nodesync) . Left child
6: lasync ← left(nodeasync)
7: rsync ← right(nodesync) . Right child
8: rasync ← right(nodeasync)
9: if dist(u, lsync) < dist(u, rsync) then

10: nodesync ← lsync

11: nodeasync ← lasync

12: else
13: nodesync ← rsync

14: nodeasync ← rasync

15: end if
16: for all token ∈ u do
17: Set nodeasync[token] . Update Bloom filter
18: end for
19: end while
20: Append u to the cluster nodesync . Invoke RPC
21: end procedure

Fig. 4. Algorithm to insert an object

a gossip protocol [25] to propagate their local updates to the
Bloom filters. These updates are not expensive because only
relative changes are sent over the network, which are easily
merged using bitwise ORing. Lookups are performed using
the Bloom filter. A Bloom filter has a 100% recall rate; hence
it solved the aforementioned problem of false negatives when
searching with the query terms unique to the present interval.

1) Insertion: New object insertions use the cluster model
to find the correct cluster for incoming objects. Here, we
illustrate using Figure 2 how insertions are performed. Suppose
an incoming object u (the red point in Figure 2) arrives. To
assign the nearest cluster to this point, it is at first compared
with centroids B and C. Distance from centroid C is found to
be lower. Thus, the object is pushed down that branch of the
tree. Centroid C has two children, namely F and G. Again,
object u is compared to both. The distance from G is found
lower. Thus, the object is pushed down that branch. The two
children of G (namely J and K) are compared to u next. The
incoming object is closer to J , which is a single cluster. Hence,
u is assigned to cluster J .

The pseudo-code for insertion using the cluster tree is
shown in Figure 4. nodesync corresponds to the synchro-
nized component of node that is updated every interval, and
nodeasync corresponds to the asynchronous components that
are maintained through Bloom filters. Lines 4–19 push the
incoming object u down the tree. Lines 9–15 compare the
new point with the two children of the presently considered
node of the tree and decide which branch to take next. As the
incoming object traverses down the tree, the local Bloom filters
of the corresponding nodes are updated (which would be later
propagated to the data input and the client query proxies). In
Line 20, the cluster that u belongs to has been decided and
the corresponding cluster summary is pushed to the in-memory
distributed cache at this point.

2) Lookup: Lookups use the asynchronous component of
the cluster model to find the correct cluster summaries related
to an incoming query. Please note that, for an insertion, the
incoming data object is assigned to only one cluster, which
is nearest from it. The incoming data items are expected to
follow the trend of the existing clusters, so that the summary
model can be used to find the nearest cluster. However, for a
lookup, the queries can be any point in space. The response is

1: procedure LOOKUP(w, dq) . Query object w
2: nodeasync ← root(CMasync) . Local cluster model
3: result← ∅ . Set of matching objects
4: if dist(w, nodeasync) ≤ dq then
5: EXPLOREBRANCH(w, dq , nodeasync, result)
6: end if
7: return result
8: end procedure

9: procedure EXPLOREBRANCH(w, dq , node, result)
10: if node is not leaf then
11: l← left(node) . Left child
12: if dist(w, l) ≤ dq then
13: EXPLOREBRANCH(w, dq , l, result)
14: end if
15: r ← right(node) . Right child
16: if dist(w, r) ≤ dq then
17: EXPLOREBRANCH(w, dq , r, result)
18: end if
19: else
20: Append cluster node to result
21: end if
22: end procedure

Fig. 5. Algorithm to lookup cluster summaries

1: procedure GENERATEMODEL(S, dc) . Set of objects S
2: root← mean(S) . Calculate centroid of S
3: if diameter(root) > dc then
4: TWOMEANSMODEL(root, dc) . Non-blocking
5: end if
6: end procedure

7: procedure TWOMEANSMODEL(node, dc)
8: . node must be divisible in atleast two clusters.
9: . TWOMEANS uses 2-means clustering to

10: . partition node into two clusters l and r.
11: (l, r) ← TWOMEANS(node) . MapReduce job
12: left(node)← l . Assign l as left child
13: right(node)← r . Assign r as right child
14:
15: . Calls to TWOMEANSMODEL are independent,
16: . asynchronous, and can be scheduled in parallel.
17: if diameter(l) > dc then
18: TWOMEANSMODEL(l, dc) . Non-blocking
19: end if
20: if diameter(r) > dc then
21: TWOMEANSMODEL(r, dc) . Non-blocking
22: end if
23: end procedure

Fig. 6. Algorithm to generate summary model

a set of cluster summaries within a mentioned distance from
the query.

Figure 5 presents the pseudo code. Lines 4–5 decide if the
query object w is within a specified distance dq of the root
node. If it is not, it is decided that the query does not match
any of the existing summaries in the model. If the distance is
within dq , Lines 10–21 traverse the tree, taking the branches
for which the distance of the centroid is less than the specified
threshold dq , and pruning when it is not.

3) Model Update: Model update is an offline job that runs
once per batching interval. It considers the objects collected in
the previous m intervals, and constructs the cluster model by
repeatedly performing 2-means clustering. Because the dis-
tance function satisfies triangle inequality, divisions performed
at each stage are independent, and are scheduled in parallel for
further division.

Figure 6 presents the pseudo code. dc is a threshold
parameter the algorithm uses to decide if the current set of

objects are distant enough to be partitioned into two clusters.
Line 2 initializes the root node of the tree. Line 11 calls the
TWOMEANS procedure to perform a 2-means clustering. In
reference to Figure 2, if C is the current set of points, F and G
are calculated in line 11. For a large set of data objects, this is
an expensive operation, and we use a MapReduce framework
to parallelize the workload [26]. Lines 12–13 updates the tree
with the newly calculated centroids. At this point, the problem
has been divided into two independent subproblems. Line 18
and 21 schedule new invocations of TWOMEANSMODEL in
parallel, and the process continues until the diameter of the
current set is less than dc.

C. Implementation

SocialTrove runs in UIUC Green Data Center [27]. We use
Python to implement a data collection service to provide
input data. Apache Thrift [28] is used as a Serialization and
RPC framework. Memcached [29] is used as a distributed in-
memory cache layer for the input data and the client query
proxies. Apache Hadoop [30] and Spark [31] are used for
offline analytics.

The input data objects are sent by input data daemons to
be stored in a Hadoop Distributed File System (HDFS) [30].
There are 23 machines with one 6-core 2.0 GHz processor
(Intel Xeon E5-2620), 16 GB memory, and 1 TB of storage.
The model update routine has been implemented using Java,
which runs on Apache Spark [32], in a subset of the available
machines. Spark has been configured to run in Standalone
mode (i.e., without Yarn [30] or Mesos [33]). Each of the
Spark slaves runs one worker process using 12 GB memory.
Due to higher memory requirements of the Spark tasks, 30%
of the memory is reserved for caching the RDDs (Resilient
Distributed Datasets) [34] instead of the default allocation of
60%. The remaining 9 GB is available for the Java heap.

A machine with two 10-core 3.0 GHz processors (Intel
Xeon E5-2690 v2) and 128 GB memory works as the driver
machine. The driver machine commands the worker machines
to build RDD (Reslilient Distributed Datasets) using the data
that has been collected over the past interval. It uses the
GENERATEMODEL algorithm (Figure 6), which generates a
summary model by repeated use of 2-means clustering as a
subroutine to bisect the distributed dataset. At each step, two
objects are randomly selected from the present dataset that
act as initial centroids. These two centroids are broadcast to
all workers. After this broadcast, the driver machine initiates
a map phase (known as RDD Transformation in Spark) so
that the workers calculate the distance of each object in its
collection from the two broadcast centroids, and assigns it to
the centroid with the smaller distance. After that, the driver
issues a reduce phase (RDD Action) that calculates two new
centroids from the previous assignments. The new centroids
are broadcast to the workers again, and the process continues
until it converges and results in two clusters. The parent RDD
is then partitioned into two child RDDs corresponding to
the newly formed clusters, each of which are scheduled to
run TWOMEANSMODEL (Figure 6), in parallel. Due to the
overhead of small jobs, once an RDD becomes small enough,
we start bisecting it in a single thread, instead of spawning
new Spark jobs. Once clustering is complete, the data input
proxies and the client query proxies update their cluster models
accordingly.

IV. EVALUATION

We evaluate SocialTrove in the context of summarizing
tweets. Each tweet is represented as a high dimensional
vector of tokens in our vector space model. We use Tanimoto
distance [16], which obeys triangle inequality [15], and can be
considered as a vector expansion of the Jaccard distance [16];
a good measurement of similarity between high-dimensional
sets. Our objective is to answer the following questions:

• For summarization to be a service, is it necessary
to precalculate a summary model? Instead, can we
generate the summaries only for the related tweets on
demand as the queries arrive?

• Where and how much do we gain by organizing the
summary as a hierarchy? Instead, can we build a
reverse index from keywords to list of tweets (or tweet
summaries)? Such techniques, used by the web search
engines, are able to support a high request throughput.

• How well does SocialTrove scale out?

Live tweets crawled from Twitter via its search API are
subject to rate limits. Hence, we merge tweets collected during
several events in the physical world, and play those back
to SocialTrove. The events include Crimean Crisis (Febru-
ary 2014), Sochi Winter Olympics (February 2014), Syria
Chemical Attack (August 2013), Boston Marathon Bombings
(April 2013), Hurricane Sandy (October 2012), Hurricane
Irene (August 2011), England Riots (August 2011), Fukushima
Nuclear Disaster (March 2011), Egyptian Revolution (January
2011), etc. This combined set contains 4 142 586 tweets.

To the best of our knowledge, SocialTrove is the first
system to offer summarization of social streams as a cloud-
backend service. We did not find any corresponding system
in the state of the art. Hence, we compare the performance
by replacing SocialTrove components and algorithms with the
following options:

• Baseline In this scheme we do not build periodic
summary models. The input daemon randomly picks
a storage machine for an incoming tweet even without
deserialization (JSON parsing). To perform a lookup,
the client proxies broadcast the query to all machines.
The machines collect matching tweets, cluster those,
and return a representative sample.

• Indexing This scheme does not precalculate a sum-
mary model. However, it maintains a keyword-to-
storage map in memory. An incoming tweet is scanned
to find keywords. For every keyword occuring in the
tweet, we consult the map, and assign the corre-
sponding storage machines. To perform a lookup, we
cluster the matching tweets collected from the storage
machines, and present a representative summary.

• Summary Baseline This scheme precalculates a sum-
mary model. It opts for a flat organization of the
cluster summaries. At every interval, the model is
pushed to the data input and the client query proxies,
just like SocialTrove. To assign an incoming tweet to
an existing cluster, this scheme computes the distance
to all the existing clusters and finds the nearest one.
To perform a lookup, this scheme again needs a linear
search through the list of summaries.

��

��

���

���

���

���

���

���

�� ��� ���� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

����������������������������

�������
��������

Fig. 7. Without a summary model, lookup throughput is very low

��

��

���

���

���

���

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

���

�����������
���������������

�����������������������
����������������

������������������������

Fig. 8. SocialTrove offers high throughput for small to medium sized requests

• Summary Indexing This scheme is derived from
techniques used by the web search engines. It com-
putes the summary model, and organizes those by re-
verse indexing from keywords to the list of summaries.
To insert a new tweet, a data input proxy extracts the
keywords from it, searches only the reverse indexes
corresponding to those keywords, and finds the nearest
summary to assign the tweet. To perform a lookup,
this scheme needs to scan the list of reverse indexes
corresponding to the given keywords, and find the
matching summaries.

A. Query Throughput

In our application, a query is a set of keywords. In
response to a query from the application, the Client Query
Proxy prepares a representative summary of the tweets that
contain the given keywords. Please note the difference between
returning all the results and returning a representative sum-
mary. The former is the application of known data structures
and storage systems that can return all the matching objects.
However, SocialTrove is a summarization service to deal with
information overload, and as such, returns a representative
sample (i.e., cluster-heads). The queries can also include an
optional distance parameter, which specifies the minimum
diversity among the returned samples.

Figure 7 shows that the throughput is very low for the
Baseline and the Indexed methods that do not pre-calculate
a summary model. These methods calculate a summary on
demand, in response to a query. The baseline option suffers the
most in lookup throughput as it is putting load on every worker
machine for every query. The indexed meachanism would have
a high throughput if the queries would ask for all matching
data objects instead of a representative summary. It performs
better than the baseline because of the underlying indexing
that provides it the set of candidate tweets without searching.
However, the throughput quickly falls off towards zero as the
number of tweets in the universe increases.

��

���

���

���

���

���

���

���

�� ��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�
��
��
��
��
�
��
��
��
��
��
��
�

����������������������������

�������
��������

Fig. 9. Response time for a request is often high without a summary model

����

��

���

����

�����

������

�� �� ��� ��� ��� ��� ���

�
��
��
��
��
�
��
��
��
���
��
��
��
��
�

�������������������

�����������
���������������

�����������������������
����������������

������������������������

Fig. 10. SocialTrove has lower response time compared to the other methods

SocialTrove client query proxies cache the summary model
in their memory once it is generated. For every query request,
it traverses the tree according to the Algorithm in Figure 5
and finds the corresponding leaves. To answer queries, it
consults the distributed in-memory cache (Memcached) to
fetch a sample tweet from each of the clusters. Figure 8
compares SocialTrove with the other methods that prepare a
summary model in advance, in a universe of 4 Million tweets.
SocialTrove can sustain a much higher throughput compared
to the other methods, because of the hierarchical organization
of the summary model. It can also incorporate the distance
parameter (diversity) without any overhead because the tree
had already calculated and cached the necessary distance
information. The Summary Indexing method offers roughtly
50% of SocialTrove throughput when the number of objects
requested is small (around 20). On the other hand, the Sum-
mary Indexing method suffers when the diversity parameter
is included. Baseline Indexing has the lowest throughput with
and without the diversity parameter because of the lack of
organization in the cluster summaries.

The evaluation presented here shows that when serving
small requests like updating a web-page with the cluster
summaries, or showing a set of tweets on a cellphone screen,
SocialTrove allows high throughput. This is particularly a use-
ful aspect of SocialTrove, because the user-facing applications
often need a ‘concise’ amount of useful information.

B. Query Response Time

In this section we measure and compare the query response
time of SocialTrove and the alternate mechanisms. Figure 9
shows that the Baseline and Indexed methods that do not
precompute a cluster summary do not scale. These mechanisms
are acceptable as a service only when the number of data
objects that pass through the system at every interval is very
low. Twitter receives around 500 Million tweets per day [35]
(or 20 Million per hour), so clearly precomputing a summary
model is necessary.

��

����

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ��� �����

�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
�

���������������������������

Fig. 11. Time to generate summary model using 8 worker machines

TABLE I
EFFECT OF PARALLELIZING MODEL GENERATION

Number of Workers Model Generation Time

4 337 minutes

8 239 minutes

11 195 minutes

Figure 10 compares the response time between the methods
that precompute the summary model in advance. We measure
the response time at various levels of load (number of requests
per second) in a universe of 4 Million tweets, and observe that
SocialTrove responds in 10 ms under heavy load, and nearly
in 1 ms under light load. The summary indexing method is
acceptable only when the system is lightly loaded (around
5K queries per second). If the diversity parameter is added,
the summary indexing method suffers even more due to the
additional distance calculations to ensure diversity.

We conclude that SocialTrove performs best, because it
(1) precalculates the cluster summaries, (2) organizes the
summaries as a tree, which prunes many options and reduces
the search space, and (3) makes it possible to cache the
summary model in main memory. If the summary model was
not cached, traversing the tree would require at least one RTT
(round trip time) in the network, reducing both throughput and
response time. On the other hand, caching the summary model
has been possible by allowing updates to the model only in
synchronous intervals. This is how SocialTrove avoids a write-
heavy data structure and cache consistency issues.

C. Cluster Model

We now present the time it takes SocialTrove to generate
a summary model using Spark. Figure 11 shows the time
in minutes, for different number of tweets as input, using 8
worker machines. k-means (in our case, k = 2) clustering
algorithms sometimes converge to local minima, which in
our case translates to unbalanced partitioning at some stages,
requiring more time to finish. This is the reason for the
variability in the summary generation time. Table I shows the
effect of parallelizing the clustering workload by comparing
the median model generation time for 4 Million tweets with
different number of worker machines.

Table II shows sample output of the summary tweets
ranked by a fact-finder application on top of SocialTrove.
Our application queried SocialTrove for the set of summaries
related to the keywords {Crimea, Ukraine, Russia} and ranked
them according to the algorithm in [8]. Note how the tweets
offer a quick insight into the highlights of the current event.
A detailed evaluation of this specific application is beyond the
scope of this paper.

TABLE II
TOP SUMMARIES

Thousands at Moscow rally against Russian intervention in #Ukraine:
http://t.co/6U0AIOOgQv http://t.co/kobbd7KzXY

Man in Ukraine plays the piano to help calm down a riot. http://t.co/fdNAc0cfJ2

For Crimea, Google Shows Different Borders Based on Your Location: Russia’s
Minister of Communications and Mass Media http://t.co/vIHGYlibOC

Militants in eastern #Ukraine were equipped with Russian weapons and the same
uniforms as those worn by Russian forces that invaded Crimea.

50,000 #Ukraine supporters march in Moscow to protest Russia’s intervention in
#Crimea. http://t.co/qMJjYgPNxI

Some russian tanks on ukrainian border already painted with ‘peacekeeping’ slogans.
How much longer until the ‘humanitarian intervention’?

I’ve been speaking to @BarackObama about the situation in Ukraine. We are united
in condemnation of Russia’s actions. http://t.co/7Rk2k8iOIK

Ukrainian Defense Ministry says its lone submarine has been taken by Russians.
http://t.co/lj1XP4q1BX http://t.co/mDDhQ2lqAO

Ukraine prepares armed response as city seized by pro-Russia forces
http://t.co/ahVX7lKftT

Ukraine crisis: Nato warns Russia against further intervention - BBC News
http://t.co/GtdmRMxAPI

V. RELATED WORK

SocialTrove is motivated by the needs of data-intensive
applications that handle sensor or social media data. We
consider social sensing applications where redundant data are
collected from people or sensors in their possession. For
exampe, CabSense [36] is a crowd-sourced service that collects
information on taxi cab fleets. Mediascope [37] describes a
media retrieval service to query and retrieve photos taken
by people directly from their mobile devices. Another recent
service uses Twitter as a sensor network and models humans
as noisy sensors to report and summarize ongoing events [8].

To reduce the inherent redundancy in data reported by such
services, a clustering algorithm is needed. A very common
one is k-means clustering [22]; an iterative method that
repeats between selecting k means as centroids, assigning
the rest of the points to the means based on similarity, and
recalculating the means. Our paper uses a special form of
the k-means algorithm, where k = 2, repeatedly bisecting
a data set to form a hierarchy. The k-means algorithm is
sensitive to its initialization. Different efforts have addressed
this problem. For example, k-means++ [38] avoids the issue
and can be applied to SocialTrove in a straightforward way.
The Buckshot Clustering algorithm [39] combines Hierarchical
Agglomerative Clustering (HAC) and k-means. It selects
O(n) points randomly and runs a group average on this sample,
which takes O(n) time. Using the result of HAC as initial seed
for k-means can avoid the bad initialization problem.

To apply k-means on streaming data, Ailon et al. [40]
run online facility location algorithm on a stream of size n,
to arrive at a partial solution with O (k log(n)) clusters. The
partial solution is followed by a ball k-means step to reduce
the number of clusters to k. Shindler et al. [18] simplify the
algorithm, which results in a better approximation guarantee.
DS-means [41] describes a distributed algorithm to cluster
data streams in a p2p environment. This system mainly uses the
distributed k-means algorithm described by Bandyopadhyay
et. al. [42], along with local instances of X-means [43]
and gossip propagation to converge to the actual number of
clusters in the system. We do not directly incorporate streaming
algorithms in SocialTrove due to the need for model updates,
required upon insertions. Instead, we use a batching interval to
update the summary model, and exploit the “slow-changing”

nature of social sensing observations in between updates.

To attain scalable implementations of data processing
services, one common execution model is MapReduce [44].
MapReduce, however, is not efficient for a large class of
vertex parallel iterative algorithms that have a substatial data
shuffling phase. Another limitation is that the results of each
round are stored on disk to be read again in the next step.
Spark [31], in contrast, is an in-memory cluster computing
framework that uses Resilient Distributed Datasets (RDD) to
record the lineage of operations on the datasets instead of
storing the data. Once a fault occurs, the lineage can be
traversed to recover from the fault. Trinity [45] is another
in-memory distributed platform for iterative computation that
partitions the dataset over the main memory of individual
machines. Other systems include Storm [46], a distributed and
fault-tolerant framework for processing streams in real-time,
and SparkStreaming [31], which uses RDDs for streaming
workloads. SocialTrove uses Spark to generate the summary
model because the main building block of that algorithm is 2-
means clustering, which is a data parallel iterative algorithm.
Typically many rounds of iterations on many subsets of the
data are necessary, along with back and forth communications
with the driver machine. The in-memory computation reduces
the inter-round overhead and latencies.

Memcached [29] is an in-memory key-value store, often
utilized to mask latencies from external data sources by
caching results [47]. SocialTrove uses Memcached [29] as
the distributed in-memory cache for the data input and the
client query proxies, which improves throughput and response
time of the queries. Druid [48] is a distributed column-
oriented real-time OLAP system that uses a combination of
real-time nodes and historical nodes to answer both real-
time queries and historical aggregate queries. Compared to
Druid, SocialTrove is not limited to structured time-series
data. Moreover, Druid emphasizes fast ingestion for real-time
queries, whereas SocialTrove provides a flexible summariza-
tion service by allowing the users to define a summarization
criteria. Duong et al. [49] consider social network topology as
a sharding technique to reduce query costs on large social net-
work databases. ApproxHadoop [50] introduces approximation
mechanisms into the MapReduce paradigm to reduce runtime.
Their approach utilizes statistical sampling theory to aggregate
data, where SocialTrove utilizes application defined distance
measurements and clustering algorithms to generate summary.

VI. CONCLUSIONS

In this paper, we described SocialTrove; an information
summarization service for social-sensing. The design of the
service is motivated by the advant of an age of information
overload, where much data is generated in real-time, and where
redundancy is common. SocialTrove delivers data summaries
at arbitrary levels of granularity by reducing redundancy
through clustering. Evaluation shows that SocialTrove is scal-
able in serving data summaries because it caches a cluster sum-
mary model in memory for a predefined interval, which allows
it to provide high throughput, low-latency lookups for real-
time social sensing data, without incurring signficiant insertion
overheads. It outperforms traditional indexing methods, which
incur a heavier latency and suffer from lower throughput. A
limitation of the current evaluation is that it tests SocialTrove
only in the context of Twitter data summarization. Future

work of the authors will focus on exploring the benefits and
performance of SocialTrove in summarizing other types of
large streaming data.

ACKNOWLEDGEMENTS

Research reported in this paper was sponsored by the Army
Research Laboratory and was accomplished under Cooperative
Agreement W911NF-09-2-0053, DTRA grant HDTRA1-10-
1- 0120, and NSF grants NSF CNS 13-29886, CNS 09-
58314, and CNS 10-35736. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] D. Estrin, “Participatory sensing: applications and architecture [internet
predictions],” Internet Computing, IEEE, vol. 14, no. 1, 2010.

[2] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen,
E. Howard, R. West, and P. Boda, “Peir, the personal environmental
impact report, as a platform for participatory sensing systems research,”
in Proceedings of the 7th international conference on Mobile systems,
applications, and services. ACM, 2009, pp. 55–68.

[3] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher,
“GreenGPS: A participatory sensing fuel-efficient maps application,” in
8th Intl. Conf. on Mobile Systems, Applications, and Services, 2010.

[4] S. Reddy, D. Estrin, and M. Srivastava, “Recruitment framework
for participatory sensing data collections,” in Pervasive Computing.
Springer, 2010, pp. 138–155.

[5] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A.
Peterson, H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn,
“The rise of people-centric sensing,” Internet Computing, IEEE, vol. 12,
no. 4, pp. 12–21, 2008.

[6] N. D. Lane, S. B. Eisenman, M. Musolesi, E. Miluzzo, and A. T.
Campbell, “Urban sensing systems: Opportunistic or participatory?” in
9th workshop on Mobile computing systems and applications, 2008.

[7] M. Shin, C. Cornelius, D. Peebles, A. Kapadia, D. Kotz, and N. Trian-
dopoulos, “Anonysense: A system for anonymous opportunistic sens-
ing,” Pervasive and Mobile Computing, vol. 7, no. 1, pp. 16–30, 2011.

[8] D. Wang, M. T. Amin, S. Li, T. Abdelzaher, L. Kaplan, S. Gu, C. Pan,
H. Liu, C. Aggarwal, R. Ganti, X. Wang, P. Mohapatra, B. Szymanski,
and H. Le, “Humans as sensors: An estimation theoretic perspective,” in
ACM/IEEE Conf. on Information Processing in Sensor Networks, 2014.

[9] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, “On truth discovery
in social sensing: A maximum likelihood estimation approach,” in
ACM/IEEE Conf. on Information Processing in Sensor Networks, 2012.

[10] M. T. A. Amin, T. Abdelzaher, D. Wang, and B. Szymanski, “Crowd-
sensing with polarized sources,” in Proc. 2014 IEEE Intl. Conference
on Distributed Computing in Sensor Systems, 2014, pp. 67–74.

[11] M. Uddin, M. Amin, H. Le, T. Abdelzaher, B. Szymanski, and
T. Nguyen, “On diversifying source selection in social sensing,” in 9th
International Conference on Networked Sensing Systems (INSS), 2012.

[12] M. F. Goodchild, “Citizens as sensors: the world of volunteered
geography,” GeoJournal, vol. 69, no. 4, pp. 211–221, 2007.

[13] P. Giridhar, M. Amin, T. Abdelzaher, L. Kaplan, J. George, and
R. Ganti, “Clarisense: Clarifying sensor anomalies using social network
feeds,” in Pervasive Computing and Communications Workshops, 2014
IEEE International Conference on, March 2014, pp. 395–400.

[14] D. Wang, T. Abdelzaher, L. Kaplan, R. Ganti, S. Hu, and H. Liu,
“Exploitation of physical constraints for reliable social sensing,” in
IEEE Real-Time Systems Symposium, 2013, pp. 212–223.

[15] A. H. Lipkus, “A proof of the triangle inequality for the tanimoto
distance,” Journal of Mathematical Chemistry, vol. 26, 1999.

[16] S.-H. Cha, “Comprehensive survey on distance/similarity measures
between probability density functions,” City, vol. 1, no. 2, p. 1, 2007.

[17] “Introducing json,” http://www.json.org.
[18] M. Shindler, A. Wong, and A. Meyerson, “Fast and accurate k-means

for large datasets,” in Neural Information Processing Systems, 2011.

[19] K. Clarkson, “Nearest-neighbor searching and metric space dimen-
sions,” in Nearest-Neighbor Methods in Learning and Vision: Theory
and Practice, 2006, pp. 15–59.

[20] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access
method for similarity search in metric spaces,” in 23rd International
Conference on Very Large Data Bases, 1997, pp. 426–435.

[21] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2005.

[22] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and
Applications, 1st ed. Chapman & Hall/CRC, 2013.

[23] L. Cayton, “Fast nearest neighbor retrieval for bregman divergences,”
in Intl. Conference on Machine Learning, 2008, pp. 112–119.

[24] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[25] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in 6th Annual ACM Symposium on
Principles of Distributed Computing, 1987, pp. 1–12.

[26] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on
mapreduce,” in 1st Intl. Conf. on Cloud Computing, 2009.

[27] [Online]. Available: http://greendatacenters.web.engr.illinois.edu/
[28] (2015, Jan) Apache thrift. [Online]. Available: https://thrift.apache.org/
[29] (2015, Jan) Memcached. [Online]. Available: http://memcached.org
[30] (2015, Jan) Hadoop. [Online]. Available: http://hadoop.apache.org/
[31] (2014, Sep) Spark. [Online]. Available: http://spark.apache.org/
[32] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: cluster computing with working sets,” in 2nd USENIX confer-
ence on Hot topics in cloud computing, 2010.

[33] (2015, Jan) Apache mesos. [Online]. Available: http://mesos.apache.org/
[34] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in 9th
USENIX Networked Systems Design and Implementation, 2012.

[35] (2014, Oct). [Online]. Available: https://blog.twitter.com/2013/
new-tweets-per-second-record-and-how/

[36] X. Yu, Q. Fu, L. Zhang, W. Zhang, V. Li, and L. Guibas, “Cabsense:
creating high-resolution urban pollution maps with taxi fleets,” ACM
MobiSys, Taipei, 2013.

[37] Y. Jiang, X. Xu, P. Terlecky, T. Abdelzaher, A. Bar-Noy, and R. Govin-
dan, “Mediascope: Selective on-demand media retrieval from mobile
devices,” in ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks, ser. IPSN ’13, 2013, pp. 289–300.

[38] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable k-means++,” Proc. VLDB Endow., vol. 5, no. 7, 2012.

[39] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey,
“Scatter/gather: A cluster-based approach to browsing large document
collections,” in Research and Development in Info. Retrieval, 1992.

[40] N. Ailon, R. Jaiswal, and C. Monteleoni, “Streaming k-means approx-
imation,” in Neural Information Processing Systems, 2009.

[41] A. Guerrieri and A. Montresor, “DS-means: Distributed data stream
clustering,” in Intl. Conf. on Parallel Processing, 2012.

[42] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu,
and S. Datta, “Clustering distributed data streams in peer-to-peer
environments,” Inf. Sci., vol. 176, no. 14, pp. 1952–1985, July 2006.

[43] D. Pelleg and A. W. Moore, “X-means: Extending k-means with effi-
cient estimation of the number of clusters,” in International Conference
on Machine Learning, 2000, pp. 727–734.

[44] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, 2008.

[45] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on
a memory cloud,” in Intl. Conference on Management of Data, 2013.

[46] (2014, Sep) Apache Storm. [Online]. Available: http://storm.apache.org/
[47] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.

Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung,
and V. Venkataramani, “Scaling memcache at facebook,” in Networked
Systems Design and Implementation, 2013, pp. 385–398.

[48] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli,
“Druid: A real-time analytical data store,” in Proceedings of the 2014
ACM SIGMOD Intl. Conf. on Management of Data, 2014, pp. 157–168.

[49] Q. Duong, S. Goel, J. Hofman, and S. Vassilvitskii, “Sharding social
networks,” in 6th Intl. Conf. on Web Search and Data Mining, 2013.

[50] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approx-
Hadoop: Bringing approximations to mapreduce frameworks,” in Intl.
Conf. on Arch. Support for Prog. Lang. and Operating Systems, 2015.

