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A New Kind of Social Sensing 
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Fact Finders State of the Art 

!   Hubs and Authorities - 1999 

! TruthFinder - 2008 

!   3-Estimates - 2010 

! AccuVote – 2010 

! Pasternack et. al – 2010 

!   Gupta et. al. – 2011 

!   Apollo - 2011 
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Assessing Source Dependency 

!   Source dependency can be modeled with the aid of the 
social network among the users. 

!   For example, in Twitter, user A can follow another 
user B, which means A has subscribed to receive the 
updates of B. 

!   Set of this follower-followee relationships create a 

network which forms a Social Graph   

A B 

Follower Followee 



Source Selection 

!   Have a distance metric between source pairs, that can be 

!   Function of their shortest path length in the social graph 

!   Function of their geographic distance 

!   Function of number of common followers or followees 
!   May be something else … 

!   Formally distance is 1- fij where fij is a dependency function 
between i and j 
!   With probability fij, source i could 

make the same or similar claims as 
source j 
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Formal Statement 
!   V is the set of all sources, S is the set of selected sources 

!   Independence Score           for each of the sources i in S is a 

measure of its independence in making claims,  with respect to 
the other selected sources  

!   Find S so that the Sum of Independence Scores over S is 
maximized 

 

 

β(i,S) = (1− fij )
j∈S
∏

β(i,S)

max β(i,S)
i∈S
∑

subject to β(i,S) ≥ τ ,∀i ∈S

= max (1− fij )
j∈S
∏

i∈S
∑

subject to (1− fij )
j∈S
∏ ≥τ ,∀i ∈S



Does it Scale? 

Photo courtesy: http://www.midatlanticoceanresearchplan.org/offshore-energy-development 



Computing a Solution 
!   Tweets arrive in real-time, like the streams. 

!   Never know who is going to tweet next ! 

!   Its not practical to crawl the whole of social network 
among all the users beforehand 

!   Too large number of sources! 

!   Problem itself NP-Hard 
 



Schematic Model 
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!   Go for an online solution – Greedy Algorithm 

!   Prefix an Admission Controller to Apollo pipeline 

!   Admission Controller passes or rejects tweets according to 
available information 

!   Set S is computed incrementally 



Admission Control Schemes 

!   By defining  the dependency function and the  
threshold appropriately, different admission 
controllers can be achieved. 

!   For example: 
!   No Direct Follower 

!   No Direct Follower + No Common Followee. 
!   No Descendants 

!   β - Controller  



No Direct Follower 

!   Deny if the source is a direct follower of 
another already admitted source. 

!   S = {P, Q, R} and M is a new source 

!   M rejected because it follows R already in S 

P Q R N

M



No Direct Follower +  
No Common Followee 

!   Deny if the previous condition holds or the 
source has at least one common followee with 
another admitted source 

P Q R N

M

!   S = {P, Q, R} and M is a new source 

!  M rejected because it follows N and R also follows N 
 



No Descendents 

!   Deny if the source is a follower of another 
admitted source possibly via a set of 
intermediate followees. 

P Q R N

M

!   S = {P, Q, R} and M is a new source 

!  M rejected because it follows P through a chain 
 



β - Controller  

!   At each step, select the source if it improves Independence 
Score of the set S by an amount of at least τ 
!   Dependency function fij taken to be pk , where k is the 

length of path from i to j. p is a “information flow” 
probability from 0 to 1. 

!   Therefore, if S = {P, Q, R} and M is a new source  
! fMP = p3, fMQ = p4, fMR= p,  
! fPM = p2, fQM = p, fRM= p4, 
!   p3 + p4 + p – p2 – p – p4 < τ 
!   M is rejected  

P Q R N

M



Evaluation  

!   Evaluations done on two datasets 
!   Egypt Unrest (dense dataset) 

!   Hurricane Irene (sparse dataset) 

Dataset Egypt Unrest Hurricane Irene 

Time Duration 18 days 7 days 

# of tweets 1,873,613 387,827 

# of users crawled 5,285,160 2,510,316 

# of users actually tweeted 305,240 261,482 

# of follower-followee links 10,490,098 3,902,713 



Comparative Scores - Egypt 

 0.6

 0.8

 1

 1.2

 1.4

 1.6

No adm

No FLWR

No CF
No DT

Beta 0
Beta 1.0

R
el

at
iv

e 
qu

al
ity

 s
co

re

With retweets
No retweets



Comparative Scores – Irene 
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Lessons Learned 

!   Human generated un-vetted data can be 
noisy, incomplete and misleading. 
Dependency and Social Connection 
between sources play an important role in 
the quality of data fusion. 

!  Diversifying Source Selection can 
improve the quality of fact finders.  

!   Experiment shows that beta admission 
control performs best in general.  

 



Conclusions 
 

!   Socially obtained data is not independent in general, we 
have suggested to consider the social network to select only a 
subset of the sources. 

!   We have mathematically formulated the above problem for 
optimality. 

!   We have provided a customizable online algorithm to 
perform the source selection in real-time, in amortized O(1) 
time. We have generated four heuristics from that 
algorithm. 

!   Experimental results say that source selection is necessary to 
improve the quality of data fusion. 
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Discussion Questions 

!   Why the admission control verdicts on sources? Isn’t it 

be more logical to decide on tweets instead? 

!   Why the admission controller is remembering its 
decisions? Shouldn’t it periodically re-asses the 
admissibility of the sources? 



Backup Slides 
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“Most Credible” Tweets Egypt Uprising 
•  Example: Summarizing Twitter Feeds  
    1.5 Million tweets collected during Egypt Uprising (Feb/March 2011). Examples of “top 

tweets” from produced event summary and corresponding media reports 

26 



Independence Score 
!   Independence Score           for each of the sources i in S is a 

measure of its independence in making claims,  with respect to 
the other selected sources  

 

β(i,S)
= P[i is independent in making claims]

= P[i is not dependent on j]
j∈S
∏

= (1− fij )
j∈S
∏

β(i,S)
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Admission Control Schemes 
!   β - Controller : At each step, select the source if it progressively 

improves Independence Score of the set S, and its own 
independence Score exceeds τ 
!   Dependency function fij taken to be pk , where k is the length 

of path from i to j. p is taken to be 0.5 
!   Therefore, if S = {P, Q, R} in the following graph,  

! fPQ = 0.5, fPR = 0.25, fPN = 0, β (P,S) = 0.5 * 0.75 = 0.375 
! fQP = 0.5, fQR = 0.5, fQN= 0,  β (Q,S) = 0.5 * 0.5 = 0.25 

! fRP = 0.25, fRQ = 0.125, fRN= 0, β (R,S) = 0.75 * 0.875 = 0.65625 
! fMP = p3, fMQ = p4, fMR= p, β (M,S) = p3 + p4 + p = 0.6875 

!   B(S) = 0.375 + 0.25 + 0.65625 = 1.28125 
 

P Q R N

M



Admission Statistics –  
Egypt (no RT) 
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Admission Statistics –  
Egypt (with RT) 
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Admission Statistics –  
Irene (no RT) 
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Admission Statistics – 
Irene (with RT) 
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